Improved Synthesis of the A-G Ring Segment of Brevetoxin B

Isao Kadota, ${ }^{*}{ }^{\dagger}$ Hiroki Nishii, ${ }^{\ddagger}$ Hiroki Ishioka, ${ }^{\ddagger}$ Hiroyoshi Takamura, ${ }^{\ddagger}$ and Yoshinori Yamamoto
Research and Analytical Center for Giant Molecules and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
ikadota@mail.tains.tohoku.ac.jp

Received February 14, 2006

An efficient synthesis of the $A-G$ ring segment 2, a key intermediate for the total synthesis of brevetoxin B (1), was achieved in 37 steps and 5.0% overall yield. The intramolecular allylation of the O, S-acetal 22, prepared from the ABC ring segment 15 and the FG ring segment 17, was carried out using AgOTf as a Lewis acid to give the desired compound 23, predominantly. Ring-closing metathesis of $\mathbf{2 3}$ with the Grubbs catalyst $\mathbf{1 2}$ afforded the heptacyclic ether 25. Selective hydrogenation of the E ring olefin of $\mathbf{2 5}$ was performed by diimide reduction to afford 2.

Introduction

Brevetoxin B (1), a potent neurotoxin, was isolated from the red tide organism Gymnodinium breve Davis in 1981 as the first example of marine polycyclic ethers (Figure 1). ${ }^{1}$ The unique structural features and biological activity of this molecule have attracted significant attention of synthetic chemists. ${ }^{2,3}$

Recently, we have reported a convergent total synthesis of brevetoxin B (1). ${ }^{2 \mathrm{~d}}$ Scheme 1 illustrates the outline of the synthesis of the $\mathrm{A}-\mathrm{G}$ ring segment. Coupling of the BC ring segments 3 and FG ring segment 4 was performed via intramolecular allylation and subsequent ring-closing metathesis to give the $\mathrm{B}-\mathrm{G}$ ring system 5 . The A ring moiety was synthesized by 11 steps based on the Nakata procedure to furnish the $\mathrm{A}-\mathrm{G}$ ring segment $2 .{ }^{2 \mathrm{c}}$ However, construction of the A ring after the key segment coupling decreased the convergency of the total synthesis of $\mathbf{1}$. To solve this problem, we examined the improved synthesis of $\mathbf{2}$ starting from the ABC and FG ring segments.

[^0]

FIGURE 1. Structure of brevetoxin B (1).

Results and Discussion

Synthesis of the ABC Ring Segment. Scheme 2 describes the synthesis of the ABC ring segment. Removal of the benzyliden acetal of $\mathbf{6}^{2 \mathrm{~d}}$ under hydrogenation conditions followed by protection of the resulting diol with MPMCl/KH gave 7 in 77% overall yield. Selective cleavage of the primary MPM ether with TMSI/HMDS gave alcohol $\mathbf{8}$ in quantitative yield. ${ }^{4}$ Swern oxidation followed by Grignard reaction with MeMgBr gave methyl carbinol 9 . Swern oxidation of $\mathbf{9}$ followed by Wittig reaction provided exo-methylene 10 in 79% overall yield. Removal of the MPM protection of $\mathbf{1 0}$ and allylation of the resulting alcohol gave diene $\mathbf{1 1}$ in 88% overall yield. Ringclosing metathesis of $\mathbf{1 1}$ with the Grubbs catalyst $\mathbf{1 2}$ furnished tricycle $\mathbf{1 3}$ in quantitative yield. ${ }^{5}$ Selective hydrolysis of the primary TBS ether afforded alcohol 14 in 95% yield. Treatment of $\mathbf{1 4}$ with $(\mathrm{PhS})_{2} / \mathrm{Bu}_{3} \mathrm{P}$ gave the ABC ring segment $\mathbf{1 5}$ in 91% yield. ${ }^{6}$

[^1]SCHEME 1. Previous Synthesis of A-G Ring Segment of Brevetoxin B

SCHEME 2. Synthesis of ABC Ring Segment ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$, EtOAc, rt; (ii) MPMCl, KH, THF, $35^{\circ} \mathrm{C}, 77 \%$ (2 steps); (b) TMSI, HMDS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 100 \%$; (c) (i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$, $-78{ }^{\circ} \mathrm{C}$ to rt; (ii) $\mathrm{MeMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; (d) (i) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C}$ to rt; (ii) $\mathrm{Ph}_{3} \mathrm{PCH}_{3}{ }^{+} \mathrm{Br}^{-}, \mathrm{NaHMDS}$, THF, $0{ }^{\circ} \mathrm{C}, 79 \%$ (4 steps); (e) (i) $\mathrm{DDQ}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}, 35{ }^{\circ} \mathrm{C}, 88 \%$; (ii) allyl bromide, $\mathrm{KH}, \mathrm{THF}, \mathrm{rt}$; (f) $\mathbf{1 2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 100 \%$ (2 steps); (g) CSA, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 95 \%$; (h) (PhS $)_{2}, \mathrm{Bu}_{3} \mathrm{P}$, DMF, rt 91%.

Coupling of the ABC and FG Ring Segments. Chlorination of $\mathbf{1 5}$ with NCS afforded the α-chlorosulfide 16 (Scheme 3). ${ }^{7}$ Acetalization of 16 with the FG ring segment $17^{2 \mathrm{~d}}$ was performed by the Inoue-Hirama protocol. ${ }^{8}$ Thus, treatment of

[^2]SCHEME 3. Coupling of ABC and FG Ring Segments ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) NCS, CCl_{4}, rt; (b) 17, AgOTf, DTBMP, MS4A, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ to $-30^{\circ} \mathrm{C}, 91 \%$ based on $\mathbf{1 7}$; (c) TBAF, THF, rt; (d) 20, CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 97% (2 steps); (e) TMSI, HMDS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 89 \%$; (f) AgOTf, MS4A, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1),-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 92 \%(23: 24=$ 87:13).
the mixture of $\mathbf{1 6}$ and $\mathbf{1 7}$ with AgOTf/DTBMP provided the O, S-acetal $\mathbf{1 8}$ in 91% overall yield. ${ }^{9}$ Removal of the TBS protection of $\mathbf{1 8}$ with TBAF followed by acid-catalyzed acetal formation with 20 afforded mixed acetal 21 in 97% overall yield. Selective cleavage of the methyl acetal was performed with TMSI/HMDS to give allylic stannane 22 in 89% yield. ${ }^{10}$ Treatment of $\mathbf{2 2}$ with AgOTf furnished an 87:13 mixture of the desired product 23 and its stereoisomer 24 in 92% yield.

Synthesis of the A-G Ring Segment. The triene 23 obtained was subjected to ring-closing metathesis using the Grubbs catalyst $\mathbf{1 2}$ to give the heptacycle 25 in 84% yield (Scheme 4). The stereochemistry of $\mathbf{2 5}$ was determined on the basis of ${ }^{1} \mathrm{H}$ NMR analysis and NOE experiments as shown in Scheme 4. The next task of the synthesis was the selective hydrogenation of the E ring moiety. After several attempts, we found that the treatment of $\mathbf{2 5}$ with diimide provided the $\mathrm{A}-\mathrm{G}$ ring segment 2 in 87% yield. The trisubstituted olefin on the A ring was totally

[^3]
SCHEME 4. Synthesis of A-G Ring Segment ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 12, benzene, $80^{\circ} \mathrm{C}, 84 \%$; (b) $\mathrm{KO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{~K}, \mathrm{AcOH}$, pyridine, MeOH , $\mathrm{rt}, 87 \%$.
inert under the reaction conditions. The spectroscopic data of 2 obtained are identical with those reported previously. ${ }^{2}$

Conclusion

We have achieved the improved synthesis of the $\mathrm{A}-\mathrm{G}$ ring segment 2, a key intermediate for the total synthesis of brevetoxin B (1), by using highly convergent strategy. The longest linear sequence leading to 2 was 37 steps with 5.0% overall yield (previous 1.4% by 47 steps). Demonstrated in this study was the power of the intramolecular allylation-RCM methodology as a tool for the convergent synthesis of polycyclic ethers. This approach will make brevetoxin B available in sufficient quantity to perform the further investigation on its biological studies.

Experimental Section

Bis-MPM Ether 7. A mixture of $\mathbf{6}(14.4 \mathrm{~g}, 23.7 \mathrm{mmol})$ and 5% $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(1.5 \mathrm{~g})$ in EtOAc $(250 \mathrm{~mL})$ was stirred for 4 h under H_{2} atmosphere. The catalyst was filtered off, and the filtrate was concentrated to give the corresponding diol, which was used for the next reaction directly.

To a suspension of $\mathrm{KH}(30 \%, 10 \mathrm{~g}, 71.2 \mathrm{mmol}$, prewashed with hexane) in THF (120 mL) at $0{ }^{\circ} \mathrm{C}$ were added the crude diol obtained above in THF (0.6 mL) and MPMCl ($7.8 \mathrm{~mL}, 59.3 \mathrm{mmol}$). After stirring for 2 h at $35^{\circ} \mathrm{C}$, the reaction mixture was quenched with MeOH and water at $0^{\circ} \mathrm{C}$ and then extracted with ether. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and chromatography (hexane/EtOAc, 20:1) gave 7 ($13.9 \mathrm{~g}, 77 \%$): oil; $R_{f}=0.47$ (hexane/EtOAc, $4: 1$); $[\alpha]^{15}{ }_{\mathrm{D}}+4.34^{\circ}$ (c 1.00, CHCl_{3}); IR (neat) $2953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 4 \mathrm{H})$, $4.52-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.62-$ 3.56 (dd, $J=10.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44-3.36 (m, 2 H), 3.31 (dd, $J=10,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=9.2,9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=11.6,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08 (dd, $J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87-1.80 (m, 1 H), 1.74 (ddd, $J=11.2,8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.00$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.1, 159.0, 130.5, 130.1, $129.4,129.3,113.8,113.7,82.3,77.9,77.2,73.1,72.9,72.5,72.4$,
$70.9,70.6,69.4,67.8,55.3,55.2,47.5,36.1,32.6,30.5,26.1,25.8$, 18.5, 18.4, 17.9, 15.7, -3.9, -4.6, -5.2, -5.2; HRMS (ESI TOF) calcd for $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 781.4507$, found 781.4597.

Alcohol 8. To a stirred solution of $7(437 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{HMDS}(0.31 \mathrm{~mL}, 1.47 \mathrm{mmol})$ and TMSI $(0.1 \mathrm{~mL}, 0.74 \mathrm{mmol})$, and the mixture was stirred for 1 h at the same temperature. To the resulting mixture were added $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg})$. After stirring for 1.5 h at room temperature, the mixture was quenched with water and extracted with ether. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and chromatography (hexane/ EtOAc, $20: 1$ to $4: 1$) gave 8 ($316 \mathrm{mg}, 100 \%$): oil; $R_{f}=0.23$ (hexane/ EtOAc, $4: 1) ;[\alpha]^{23}{ }_{\mathrm{D}}+1.49^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $3480 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83$ (m, 2 H), 4.55-4.34 (m, 2 H$), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 1 \mathrm{H})$, $3.65-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 2 \mathrm{H})$, 3.31 (dd, $J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (ddd, $J=9.6,9.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{dd}, J=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=12,4.8,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=7.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}) 1.74$ (ddd, $J=14,8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.52(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{t}, J=11.6,1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $1.16-1.09$ (m, 1 H), 0.91 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (s, 9 H), 0.82 (s, 9 H), $0.00(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2$, 129.9, 129.3, 113.9, 82.4, 78.0, 73.3, 72.6, 72.4, 70.8, 70.5, 67.8, $63.0,55.3,47.5,36.1,30.2,26.1,25.8,18.5,18.4,18.0,15.9,-3.7$, $-4.6,-5.1,-5.2$; HRMS (ESI TOF) calcd for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$661.3932, found 661.3997.
Olefin 10. To a stirring mixture of DMSO ($82 \mu \mathrm{~L}, 1.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(76 \mu \mathrm{~L}, 0.87$ mmol), and the mixture was stirred for 0.5 h . A solution of alcohol $8(368 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, and the stirring was continued for 1 h at the same temperature. To the resulting mixture was added $\mathrm{Et}_{3} \mathrm{~N}(0.49 \mathrm{~mL}, 3.5 \mathrm{mmol})$, and the mixture was allowed to warm to room temperature. The mixture was diluted with ether and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The crude aldehyde obtained was used for the next reaction directly.

To a mixture of the aldehyde obtained in THF (6 mL) at $0{ }^{\circ} \mathrm{C}$ was added MeMgI (1.06 M in ether, $3.3 \mathrm{~mL}, 3.5 \mathrm{mmol}$). After stirring for 0.5 h at the same temperature, the mixture was quenched with MeOH , diluted with ether, and washed with water and brine. The organic layer was dried over MgSO_{4} and concentrated to give the crude alcohol 9 , which was used for the next reaction directly.

To a stirring mixture of DMSO ($82 \mu \mathrm{~L}, 1.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(76 \mu \mathrm{~L}, 0.87 \mathrm{mmol})$, and the mixture was stirred for 0.5 h . A solution the crude alcohol 9 obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, and the strring was continued for 1 h at the same temperature. To the resulting mixture was added $\mathrm{Et}_{3} \mathrm{~N}(0.49 \mathrm{~mL}, 3.5 \mathrm{mmol})$, and the mixture was allowed to warm to room temperature. The mixture was diluted with ether and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The crude ketone obtained was used for the next reaction directly.

To a suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3}{ }^{+} \mathrm{Br}^{-}(608 \mathrm{mg}, 0.58 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added NaHMDS (1.0 M in THF, $1.7 \mathrm{~mL}, 1.7$ mmol), and the mixture was stirred for 20 min at the same temperature. To the resulting mixture was added a solution of crude ketone obtained above in THF (2 mL). After stirring for 1 h at room temperature, the reaction mixture was quenched with water and extracted with ether. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and chromatography (hexane/ EtOAc, 20:1) gave 10 ($298 \mathrm{mg}, 79 \%$): oil; $R_{f}=0.6$ (hexane/EtOAc, 4:1); $[\alpha]^{26}{ }_{\mathrm{D}}-14.4^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $2953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.19$ (m, 2 H), 6.86-6.82 (m, 2 H), $5.09(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=9.6$ Hz, 1 H), 3.78 (s, 3 H), 3.53 (dd, $J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (ddd, $J=10.8,8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{ddd}, J=$ 9.2, 9.2, 2.0 Hz, 1 H), 3.02 (dd, $J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd,
$J=11.2,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{ddd}, J=$ $14.8,8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (s, 3 H), 1.62-1.53 (m, 1 H), $1.49-$ $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.15$ (ddd, $J=14,9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 0.93 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.88 ($\mathrm{s}, 9 \mathrm{H}$), 0.84 (s, 9 H), 0.02 (s, 12 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,143.1,130.2,129.3$, 115.5, 113.8, 113.7, 82.3, 78.1, 76.8, 74.8, 72.4, 70.9, 70.7, 67.7, $55.3,47.6,36.1,32.6,30.9,26.1,25.8,18.5,18.4,18.1,17.9,15.9$, $-4.0,-4.6,-5.2,-5.2$; HRMS (ESI TOF) calcd for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{O}_{6}$ $\mathrm{Si}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$671.4139, found 671.4187.

Tricycle 13. To a solution of $\mathbf{1 0}(278 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and DDQ (195 $\mathrm{mg}, 0.86 \mathrm{mmol})$, and the mixture was stirred for 1.5 h at $45^{\circ} \mathrm{C}$. The reaction mixture was diluted with ether and then washed with saturated NaHCO_{3}, water, and brine. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and chromatography (hexane/EtOAc, 10:1) gave the corresponding alcohol (188 $\mathrm{mg}, 84 \%$): oil; $R_{f}=0.36$ (hexane/EtOAc, $4: 1$); $[\alpha]^{28}{ }_{\mathrm{D}}-28.0^{\circ}(c$ $0.90, \mathrm{CHCl}_{3}$); IR (neat) $3448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1$ H), $3.53(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.41$ (ddd, $J=10.8,9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19 (ddd, $J=9.6,9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (ddd, $J=11.6,4.4,4.4$ $\mathrm{Hz} 1 \mathrm{H}), 2.09(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{t}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{ddd}, J=14,9.6,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.30$ (s, 6 H), 0.17 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,115.8$, 82.4, 78.8, 78.2, 72.7, 70.9, 67.7, 67.4, 47.5, 36.1, 32.6, 32.5, 26.1, $25.8,18.5,18.3,18.0,17.1,15.9,-4.0,-4.6,-5.2,-5.2$; HRMS (ESI TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 551.3564$, found 551.3584.

To a suspension of KH ($214 \mathrm{mg}, 1.6 \mathrm{mmol}, 30 \%$, prewashed with hexane) in THF (1.5 mL) at $0^{\circ} \mathrm{C}$ were added allyl bromide $(0.14 \mathrm{~mL}, 1.6 \mathrm{mmol})$ and the alcohol obtained above $(170 \mathrm{mg}, 0.32$ $\mathrm{mmol})$ in THF (1.5 mL). After stirring for 1 h at the same temperature, the reaction mixture was quenched with MeOH . The mixture was diluted with ether and then washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to give crude 11, which was used for the next reaction directly.

To a mixture of the allylic ether $\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mathrm{~mL})$ was added $12(53 \mathrm{mg}, 64 \mu \mathrm{~mol})$, and the mixture was stirred for 20 h at room temperature. The mixture was filtered through a short silica gel column (ether) and concentrated. The residue was purified by chromatography (hexane/EtOAc, 40:1) to give $\mathbf{1 3}$ (176 mg , 100%): oil; $R_{f}=0.38$ (hexane/EtOAc, 10:1); $[\alpha]^{22}{ }_{\mathrm{D}}-14.1^{\circ}(c 1.00$, CHCl_{3}); IR (neat) $2953 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.31$ (dd, $J=3.2,2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (bd, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dd, $J=16.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $10,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (ddd, $J=10.8,9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.21-3.14$ (m, 2 H), $3.12(\mathrm{dd}, J=12,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (ddd, $J=14.4,9.2,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68$ $(\mathrm{s}, 3 \mathrm{H}), 1.62(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{t}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ (s, 3 H), 1.15 (ddd, $J=13.6,10,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86$ (s, 9 H), 0.84 (s, 9 H), 0.04 (s, 6 H), 0.00 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4,121.1,82.6,79.4,74.8,73.5$, $71.0,69.6,67.7,66.9,47.4,36.2,32.5,31.3,26.1,25.8,18.5,18.3$, 17.9, 17.3, 16.3, -3.9, -4.5, -5.2, -5.2; HRMS (ESI TOF) calcd for $\mathrm{C}_{29} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 563.3564$, found 563.3514.

Alcohol 14. To a mixture of $\mathbf{1 3}(309 \mathrm{mg}, 0.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added CSA $(26 \mathrm{mg}, 0.11$ $\mathrm{mmol})$. After stirring for 2.5 h at the same temperature, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and filtered through a short silica gel column (ether). Concentration and chromatography (hexane/ EtOAc, 4:1) gave 14 ($230 \mathrm{mg}, 95 \%$): oil; $R_{f}=0.23$ (100% hexane to hexane/EtOAc, 4:1); $[\alpha]^{21}{ }_{\mathrm{D}}-2.1^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $3458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.28(\mathrm{dd}, J=3.6,2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16$ (bd, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=16.4,2.8 \mathrm{~Hz}$, 1 H), 3.88 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=10.8,8.8,4.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=9.2,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}$, $J=12.4,4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.00$ (m, 2 H), 1.92-1.86 (m, 1 H$), 1.70(\mathrm{ddd}, J=14.8,7.6,2 \mathrm{~Hz}, 1$ H), 1.63 (s, 3 H), $1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.41$ (m, 2 H$), 1.17$ (s, 3 H), $0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, 0.01 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.3,121.2,81.7$, $79.5,74.6,73.3,70.0,69.5,67.5,66.9,47.3,35.6,32.6,31.1,25.8$, 18.0, 17.3, 17.2, 16.2, -3.8, -4.6; HRMS (ESI TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 449.2699$, found 449.2667 .

Sulfide 15. To a mixture of $\mathbf{1 4}(2.55 \mathrm{~g}, 6.0 \mathrm{mmol})$ in DMF (60 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $(\mathrm{PhS})_{2}(2.87 \mathrm{~g}, 13 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{P}(3.3$ $\mathrm{mL}, 13 \mathrm{mmol}$), and the mixture was stirred for 4 h at room temperature. The mixture was diluted with ether and then washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and chromatography (hexane/ EtOAc, $40: 1$ to 20:1) gave 15 ($2.9 \mathrm{~g}, 95 \%$): oil; $R_{f}=0.29$ (hexane/ EtOAc, 10:1); $[\alpha]^{21}{ }_{\mathrm{D}}-24.6^{\circ}\left(c 0.90, \mathrm{CHCl}_{3}\right)$; IR (neat) $2952 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.11$ (m, 5 H), $5.34(\mathrm{dd}, J=$ $3.6,2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{bd}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=16.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{ddd}, J=10.8,9.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=8.4,4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09 (dd, $J=9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=12.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08 (dd, $J=12,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (ddd, $J=14.4,9.2,2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{q}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.49(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=14.4,10,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,134.4,128.7,128.7$, 125.4, 121.1, 82.2, 79.4, 74.8, 73.4, 70.7, 69.6, 66.9, 47.4, 40.3, 38.9, 31.2, 29.9, 25.8, 20.6, 18.0, 17.3, 16.2, -3.8, -4.6; HRMS (ESI TOF) calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{SSiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 541.2784$, found 541.2736.
$\boldsymbol{O}, \boldsymbol{S}$-Acetal 18. To a mixture of $\mathbf{1 5}(222 \mathrm{mg}, 0.43 \mathrm{mmol})$ in CCl_{4} $(2 \mathrm{~mL})$ was added NCS $(57 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. The mixture was stirred for 0.5 h at room temperature to give a solution of α-chlorosulfide 16 , which was used for the next reaction directly.

To a mixture of $\mathbf{1 7}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$, DTBMP $(0.37 \mathrm{~mL}$, $1.7 \mathrm{mmol})$, and MS4A $(1.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{AgOTf}(220 \mathrm{mg}, 0.86 \mathrm{mmol})$, and the mixture was stirred for 10 min at the same temperature. To the resulting mixture was added 16 obtained above, and the mixture was allowed to warm to $-45{ }^{\circ} \mathrm{C}$ over 2 h . The mixture was then filtered through a silica gel pad (ether). Concentration and chromatography (hexane/EtOAc, $40: 1$ to $4: 1$ containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave 18 ($134 \mathrm{mg}, 91 \%$ from reacted 17) and unreacted $17(30 \mathrm{mg}, 30 \%)$. 18: amorphous; $R_{f}=$ 0.44 (hexane/EtOAc, 4:1); $[\alpha]^{22}{ }_{\mathrm{D}}+8.23^{\circ}\left(c 0.98, \mathrm{CHCl}_{3}\right)$; IR (neat) $2952 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.15(\mathrm{~m}, 15 \mathrm{H})$, 5.81 (dd, $J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=$ $17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (bd, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=16,2.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.86 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $J=10.2,4.8 \mathrm{~Hz}, 1$ H), $3.54-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.20$ (ddd, $J=9.2,9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (ddd, $J=12,8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=12.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{dd}, J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11$ (dd, $J=14.7,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.78$ (m, 2 H), 1.62 ($\mathrm{s}, 3 \mathrm{H}$), 1.58-1.46 (m, 2 H), 1.43-1.35 (m, 2 H), $1.31-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{dd}, J=4.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3$ H), $0.79(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $144.9,138.5,138.5,135.8,134.3,133.0,128.8,128.2,128.2,127.6$, 127.5, 127.4, 127.4, 127.2, 121.2, 111.9, 93.1, 83.0, 79.6, 77.8, $77.4,76.9,76.4,74.8,73.4,73.0,73.0,71.3,71.1,71.0,69.6,66.9$, $66.1,47.5,40.2,36.5,35.4,31.3,26.1,25.9,23.1,19.7,18.1,17.5$, 17.4, 17.3, 16.3, -4.0, -4.4; HRMS (ESI TOF) calcd for $\mathrm{C}_{58} \mathrm{H}_{82}-$ $\mathrm{O}_{9} \mathrm{SSiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$1005.5346, found 1005.5369.

Mixed Acetal 21. To a mixture of $18(174 \mathrm{mg}, 177 \mathrm{mmol})$ in THF (1.8 mL) was added TBAF (1.0 M in THF, $0.47 \mathrm{~mL}, 470$ mmol). After stirring for 20 h at room temperature, the reaction
mixture was filtered through a short silica gel column (ether). Concentration gave the corresponding crude alcohol, which was used for the next reaction directly.

To a solution of the crude alcohol obtained above and $\mathbf{2 0}$ (0.17 $\mathrm{mL}, 0.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added CSA $(8.1 \mathrm{mg}, 35$ $\mu \mathrm{mol}$), and the mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and filtered through a short alumina column (EtOAc). The filtrate was concentrated and purified by chromatography (hexane/EtOAc, 50:1 to $4: 1$ containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 21 as a mixture of diastereoisomers (212 mg , 97\%): oil; $R_{f}=0.41$ (hexane/EtOAc, 4:1); IR (neat) $2926 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.78-7.12$ (m, 15 H), 6.48-6.39 $(\mathrm{m}, 1 \mathrm{H}), 5.76-5.71(\mathrm{~m} 1 \mathrm{H}), 5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.22(\mathrm{~m}$, $1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.44(\mathrm{~m}, 3 \mathrm{H})$, $4.34-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 1 \mathrm{H})$, 3.73-3.69 (m, 3 H), 3.64-3.50 (m, 1 H), 3.35-3.22 (m, 6 H), $2.79-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H})$, $2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.70-$ 1.61 (m, 9 H), 1.51-1.43 (m, 6 H), 1.43-1.38 (m, 6 H), 1.32$1.22(\mathrm{~m}, 6 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 18 \mathrm{H})$; HRMS (ESI TOF) calcd for $\mathrm{C}_{68} \mathrm{H}_{102} \mathrm{O}_{10} \mathrm{SSnNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$1251.6113, found 1251.5930.

Allylic Stannane 22. To a mixture of $21(46 \mathrm{mg}, 37 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{HMDS}(0.21 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and TMSI ($0.11 \mathrm{~mL}, 0.78 \mathrm{mmol}$). After stirring for 1 h at the same temperature, the reaction mixture was quenched with saturated NaHCO_{3} and extracted with ether. The oragnic layer was washed with saturated NaHCO_{3} and brine. Concentration and chromatography (hexane/EtOAc, 10:1 containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave $22(39 \mathrm{mg}$, 89%): oil; $R_{f}=0.44$ (hexane/EtOAc, 4:1); $[\alpha]^{23}{ }_{\mathrm{D}}-0.70^{\circ}$ (c 0.97 , CHCl_{3}); IR (neat) 2926, $1651 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.74-7.12$ (m, 15 H$), 6.42$ (dd, $J=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=$ $10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.76$ (ddd, $J=8.4,8.4,5.6 \mathrm{~Hz}$, 1 H), 4.49-4.43 (m, 3 H), 4.32-4.27 (m, 2 H), 4.20-4.05 (m, 3 H), 3.91-3.85 (m, 1 H), 3.77-3.70(m, 3 H), 3.58-3.52 (m, 1 H$)$, 3.37 (dd, $J=12,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=12,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.58$ (ddd, $J=14,6.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=12,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28-2.25$ (m, 1 H), 2.22-2.18 (m, 2 H), 2.17-2.11 $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.76-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3$ H), $1.11-1.03(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4$, $140.4,139.2,139.0,136.3,134.5,133.2,129.0,128.2,127.6,127.6$, $127.4,127.3,127.2,121.3,111.3,106.8,93.3,80.9,79.9,79.4$, $78.3,77.9,77.0,76.5,74.8,73.3,73.1,73.0,71.7,70.9,70.0,66.6$, $66.3,40.8,36.9,35.5,31.6,29.6,29.5,27.7,27.7,26.5,23.9,19.9$, 17.5, 17.4, 17.3, 16.0, 13.9, 9.7, 6.5; HRMS (ESI TOF) calcd for $\mathrm{C}_{67} \mathrm{H}_{98} \mathrm{O}_{9} \mathrm{SSnNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$1219.5851, found 1219.5614 .

Cyclization of 22. To a mixture of $22(11 \mathrm{mg}, 9.2 \mu \mathrm{~mol})$ and MS4A (90 mg) in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1,0.9 \mathrm{~mL})$ was added AgOTf ($19 \mathrm{mg}, 74 \mu \mathrm{~mol}$), and the mixture was stirred vigorously for 7 h at $30^{\circ} \mathrm{C}$. An additional amount of $\mathrm{AgOTf}(19 \mathrm{mg}, 74 \mu \mathrm{~mol})$ was added, and the stirring was continued for 14 h . The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and filtered through through a short silica gel column (ether). Concentration and chromatography (hexane/EtOAc, 20:1 containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave a mixture of 23 and $24(6.8 \mathrm{mg}$, 92%); the ratio of 23 and 24 (87:13) was determined by ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture. Although careful separation of the mixture gave pure 23, the stereoisomer 24 was still contaminated with small amounts of 23. 23: oil; $R_{f}=0.41$ (hexane/EtOAc, 3:1); $[\alpha]^{23}{ }_{\mathrm{D}}$ $+24.5^{\circ}\left(c 0.38, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2928, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.83(\mathrm{dd}, J=17.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.62 (ddd, $J=17.2,10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (d, $J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=$ $10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (ddd, $J=10.4,1.6,1.6 \mathrm{~Hz}), 4.48(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}$,
$J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (bd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (ddd, $J=11.2,9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.58-3.49$ (m, 3 H), 3.29 (dd, $J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (bs, 1 H), 3.22 (dd, $J=12,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17-3.08 (m, 3 H), 2.10 (dd, $J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 4 \mathrm{H})$, $1.71(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.41$ (q, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.33 (s, 3 H), 1.19 (s, 3 H), 1.19-1.18 (m, 1 H), 1.18 (s, 3 H), 0.96 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,138.4,137.3,134.5,128.2,128.2,127.6$, 127.5, 127.5, 127.4, 120.9, 115.7, 113.9, 83.6, 81.9, 79.9, 79.7, $78.9,77.8,77.1,74.7,73.4,73.2,73.0,71.8,71.1,69.5,66.9,66.0$, $45.1,40.3,40.2,34.9,31.2,27.6,26.9,22.2,21.7,19.7,17.5,17.2$, 15.8, 15.3; HRMS (ESI TOF) calcd for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{O}_{9} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 821.4605, found 821.4694.

Heptacycle 25. To a mixture of $23(55.7 \mathrm{mg}, 71.5 \mu \mathrm{~mol})$ in benzene (14.3 mL) was added $12(30 \mathrm{mg}, 36 \mu \mathrm{~mol})$, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . An additional amount of $\mathbf{1 2}$ (120 mg, $\mu 144 \mathrm{~mol}$) was added, and the stirring was continued for 23 h . The mixture was filtered through a short silica gel column (ether), and the filtrate was concentrated. The residue was purified by chromatography (hexane/EtOAc, 20:1) to give 25 ($9.6 \mathrm{mg}, 83 \%$): amorphous; $R_{f}=0.38$ (hexane/EtOAc, 3:1); [$\left.\alpha\right]^{26}$ D $-2.24^{\circ}(c 0.48$, CHCl_{3}); IR (neat) 2928, $1654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.66(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}$, $J=12.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 1 \mathrm{H})$, 4.12 (ddd, $J=9.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09-4.04 (m, 1 H), 3.90 (bd, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=9.2,6.0$ Hz, 1 H), 3.31-3.21 (m, 3 H), 3.15 (ddd, $J=11.6,8.8,4.0 \mathrm{~Hz}, 1$ H), 3.09 (dd, $J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06-3.00 (m, 1 H), 2.101.93 (m, 4 H$), 1.91-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (s, $3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.22$ (s, 3 H), 1.19-1.17 (m, 1 H), 1.17 (s, 3 H), 1.12 (s, 3 H), 0.97 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9,138.5$, 138.4, 134.5, 131.8, 128.2, 127.6, 127.5, 127.4, 127.4, 121.0, 88.9, 86.2, 84.8, 84.4, 83.6, 80.5, 79.4, 78.1, 77.3, 74.8, 74.0, 73.4, 73.0, $72.9,71.1,69.6,67.0,66.0,44.9,40.3,40.2,35.3,33.5,31.1,29.3$, 22.7, 20.2, 18.1, 17.6, 17.2, 16.4; HRMS (ESI TOF) calcd for $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 793.4292$, found 793.4285.

A-G Ring Segment 2. To a mixture of $\mathbf{2 5}(9.6 \mathrm{mg}, 12.5 \mu \mathrm{~mol})$, $\mathrm{KO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{~K}(105 \mathrm{mg}, 0.63 \mathrm{mmol})$, and pyridine $(0.86 \mathrm{~mL})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{AcOH}(0.11 \mathrm{~mL}, 1.9 \mathrm{mmol})$ slowly via syringe pump $(0.04 \mathrm{~mL} / \mathrm{h})$. After stirred at room temperature for 3 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and filtered with short silica gel column (ether). Concentration and chromatography (hexane/EtOAc, 20:1 to 10:1) gave $2(8.4 \mathrm{mg}$, 87\%): amorphous; $R_{f}=0.31$ (hexane/EtOAc, 4:1); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 10 \mathrm{H}), 5.34$ (brs, 1 H), 4.54 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (brd, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.13 (brd, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{dd}, J=8.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{dd}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.14$ (dd, $J=12.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10-3.06 (m, 2 H), 2.13-2.09 (m, $3 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.53$ $(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, 1.27 (s, 3 H), $1.24(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3$ H). The ${ }^{1} \mathrm{H}$ NMR data of 2 are identical with those reported previously. ${ }^{2}$

Acknowledgment. This work was financially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ NMR spectra of selected compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0603025

[^0]: ${ }^{\dagger}$ Research and Analytical Center for Giant Molecules.
 ₹ Department of Chemistry.
 (1) Lin, Y.-Y.; Risk, M.; Ray, S. M.; Van Engen, D.; Clardy, J.; Golik, J.; James, J. C.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773-6775.
 (2) (a) Nicolaou, K. C.; Rutjes, F. P. J. T.; Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E. J. Am. Chem. Soc. 1995, 117, 1173-1174. (b) Nicolaou, K. C.; Rutjes, F. P. J. T.; Theodorakis, E. A.; Tiebes, J.; Sato, M.; Untersteller, E. J. Am. Chem. Soc. 1995, 117, 10252-10263. (c) Matsuo, G.; Kawamura, K.; Hori, N.; Matsukura, H.; Nakata, T. J. Am. Chem. Soc. 2004, 126, 14374-14376. (d) Kadota, I.; Takamura, H.; Nishii, H.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9246-9250.
 (3) For recent reviews on the synthesis of marine polycyclic ethers, see: (a) Nakata, T. Chem. Rev. 2005, 105, 4314-4347. (b) Inoue, M. Chem. Rev. 2005, 105, 4379-4405.

[^1]: (4) Kadota, I.; Ueno, H.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 8935-8938.

[^2]: (5) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039-2041. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
 (6) Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 1409-1412.
 (7) Mukaiyama, T.; Sugaya, T.; Marui, S.; Nakatsuka, T. Chem. Lett. 1982, $1555-1558$.
 (8) (a) Inoue, M.; Wang, G.-X.; Wang, J.; Hirama, M. Org. Lett. 2002, 4, 3439-3442. (b) Inoue, M.; Miyazaki, K.; Uehara, H.; Maruyama, M.; Hirama, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12013-12018.

[^3]: (9) MacAuliffe, J. C.; Hindsgaul, O. Synlett 1998, 307-309.
 (10) Kadota, I.; Sakaihara, T.; Yamamoto, Y. Tetrahedron Lett. 1996, 37, 3195-3198.

